Equations Normel
Prohram Matrics Answer
2x + 3y - 5z1 = -7 clc     X =
3x + 2y - 2z2 = 1 clear 1
5x + 2y - 3z3 = 0 close all  
كسور عشرية format shortG  
MthLab ¬ Z3 معاملات A=[2 3 -5; 3 2 -2;5 2 -3]; Y =
z1=(2*x+3*y+7)/5; ¬ Z2 ثوابت B=[-7;1;0]; 2
z2=(3*x+2*y-1)/2; K=inv(A)*B;  
z3=(5*x+2*y)/3; ¬ Z1 X=K(1);  
Y=K(2); Z =
Back Example5 Z=K(3); 3
Back Example6 X',Y',Z'  
Prohram     OR:¯   Basic ­­­
clc               clc            
[x,y]=meshgrid(1:0.1:3,1:0.1:3); ­­­   syms x y z  
z1=(2*x+3*y+7)/5; ®®®   [x y z]=solve(2*x+3*y-5*z+7,3*x+2*y-2*z-1,5*x+2*y-3*z)
z2=(3*x+2*y-1)/2;    
z3=(5*x+2*y)/3;     Prohram for soluation liner equations
surf(x,y,z1);     clc        
hold on     syms x y z  
surf(x,y,z2);     f1=input('pls type the first equation ','S');
hold on     f2=input('pls type the secod equation','S');
surf(x,y,z3);     f3=input('pls type the third equation ','S');
datacursormode on        [x y z]=solve(f1,f2,f3)    
%press on intersecation point to value   x = [1]
xlabel('Axsis - x')     y = [2] After Run
ylabel('Axsis - y')     z = [3]
zlabel('Axsis - z')      
MatLab2015a  
 
             
لمعرفة قيم المجاهيل x , y , z
clc
syms x y z
f1=2*x+3*y-5*z==-7;
f2=3*x+2*y-2*z==1;
f3=5*x+2*y-3*z==0;
[x y z]=solve(f1,f2,f3)
x =
1
y =
2 By: Graph ®
z =
3