|
معاملات
المجاهيل |
eq1: |
2 x + (3) y = 12 |
|
eq2: |
2 x + (-1)
y = 4 |
|
الطريقة |
معاملات المجاهيل |
قيم
المحدد |
المجاهيل |
الثوابت |
باستخدام التعويض |
|
|
|
x |
y |
المجاهيل |
الثوابت |
|
الحل |
|
حل المعادلتين |
رقم المعادلة |
|
باستخدام المحددات |
2 |
3 |
D |
x |
12 |
|
eq1: |
2 |
3 |
x |
12 |
الحل |
x = |
3 |
2 x +3 y = 12 |
¾® (1) |
|
|
2 |
-1 |
8 |
y |
4 |
|
eq2: |
2 |
-1 |
y |
4 |
¾® |
y = |
2 |
2 x - 1 y =
4 |
¾® (2) |
|
ثوابت |
معاملات Y |
|
|
|
|
x = |
-3 |
Change |
y = |
6 |
Solve By
Gool Seek (From: Tools®Gool Seek), Fill in: |
|
12 |
3 |
DC |
x |
DC |
|
cell ¾® |
8 |
From: Tools®Gool
Seek |
Set
Cell: B6 , To value = 0 , By changig cell press B5 |
|
4 |
-1 |
24 |
3 |
x |
3 |
|
|
معاملات
المجاهيل |
|
|
|
|
|
|
|
|
|
معاملات x |
ثوابت |
|
|
|
|
|
حل آخر |
x |
y |
z |
المجاهيل |
الثوابت |
الحل |
حل ثلاث معادلات |
رقم المعادلة |
|
2 |
12 |
DU |
Y |
DU |
|
|
eq1: |
2 |
3 |
-5 |
x |
-7 |
x = |
1 |
2 x + 3 y - 5 z = -7 |
¾® (1) |
|
2 |
4 |
16 |
2 |
Y |
2 |
|
eq2: |
3 |
2 |
-2 |
y |
1 |
y = |
2 |
3 x + 2 y - 2 z = 1 |
¾® (2) |
eq1: |
2 x + (3) y = 12 |
3 |
0 |
3 |
3 |
|
eq3: |
5 |
2 |
-3 |
z |
0 |
z = |
3 |
5 x + 2 y - 3 z = 0 |
¾® (2) |
eq2: |
2 x + (-1) y = 4 |
2 |
2 |
2 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
3 |
-5 |
حل بالصف البسيط & الجبري & المصفوفة |
|
|
|
( 3 , 2 ) |
¬¾ لرسم خطان من نقطة التقاطع ↑ |
|
D = |
3 |
2 |
-2 |
= 13 |
|
برمجة وبياني/MthLab |
|
|
|
|
|
|
5 |
2 |
-3 |
|
|
الحل باستخدام ـ Solver |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-7 |
3 |
-5 |
|
|
|
|
|
¬¾ |
|
|
|
|
|
|
DC = |
1 |
2 |
-2 |
= 13 |
® x = |
DC / D = |
1 |
باستخدام
المحددات |
|
|
|
|
|
|
|
0 |
2 |
-3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
-7 |
-5 |
|
|
|
|
|
|
|
|
|
|
|
DU = |
3 |
1 |
-2 |
= 26 |
® y = |
DU / D = |
2 |
|
|
|
|
|
|
|
5 |
0 |
-3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
3 |
-7 |
|
|
|
|
|
|
|
|
|
|
|
DZ = |
3 |
2 |
1 |
= 39 |
® z = |
DZ / D = |
3 |
¬¾ |
|
|
|
|
|
|
|
5 |
2 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Points
for eq1: |
الخط الأزرق |
X |
-5 |
6 |
|
Mathcad 15 |
|
|
|
|
|
|
Y |
7.3333 |
0 |
|
|
|
|
|
Points
for eq2: |
الخط الاحمر |
X |
-5 |
6 |
|
|
|
|
Y |
-14 |
8 |
|
|
|
|
|
Mathematica 9 |
|
|
|
|
|
|
|
|
|
In[1] Solve[{2 x + 3 y - 5 z == -7, 3 x + 2 y - 2 z == 1,5 x + 2 y -
3 z == 0}, {x, y, z}] |
Steps: |
|
|
|
|
|
|
|
|
|
|
Out[1] {{x
-> 1, y -> 2, z -> 3}} |
|
|
|
|
|
|
|
|
1. Type [Ctrl] M to
create a vector having 3 rows and 1 column. |
|
Maple 18 |
|
|
|
|
|
|
|
|
|
|
|
2.
Fill in each placeholder of the vector with one of the n equations making up |
solve({2x+3y-5z = -7, 3x+2y-2z = 1, 5x+2y-3z = 0}, {x, y,
z}) |
|
|
|
|
|
the system. Make sure you type [Ctrl] [=]
to enter the Boolean equal sign. |
{x = 1, y =
2, z = 3} |
|
|
|
|
|
|
|
|
|
3. Type [Ctrl] [Shift]
[.] (period). |
|
|
|
|
|
|
Derive 6 |
|
|
|
|
|
|
|
|
|
|
|
4.
Type solve followed by a comma in the placeholder to the left of the symbolic |
SOLVE({2·x + 3·y - 5·z = -7, 3·x + 2·y - 2·z = 1, 5·x + 2·y
- 3·z = 0}, {x, y, z}) |
|
|
equal sign, “→.” |
|
|
|
|
|
|
|
x = 1 ∧ y
= 2 ∧ z = 3 |
Use Expad or Apprpximate |
Under simplify |
|
|
|
|
5.
Type [Ctrl] M to create a vector having n rows and 1 column. Then enter the |
Microsoft
Math Ver. 16.0 |
|
|
. |
|
|
variables you are solving for. |
|
|
|
|
|
|
|
solve({2x+3y-5z = -7, 3x+2y-2z = 1, 5x+2y-3z = 0}, {x, y,
z}) |
|
|
6. Press [Enter]. |
|
|
|
|
|
|
|
|
|
|
|
Microsoft Mathematics Ver. 4 |
|
|
|
|
|
|
|
|
|
Iput |
|
|
|
Iput |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution |
|
|
|
Solution |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
clc |
|
|
MatLab2015a |
|
|
|
|
|
|
MatLab2015a |
|
|
|
|
|
|
|
®®® |
OR: |
syms x y z |
|
|
c=solve([2*x+3*y-5*z==-7,3*x+2*y-2*z==1,5*x+2*y-3*z==0],[x,y,z]) |
Program |
f1=input('Enter
q1 '); %2*x+3*y-5*z==-7 |
|
|
c.x,c.y,c.z ® |
ans = |
1 |
ans = |
2 |
|
ans = |
3 |
|
|
f2=input('Enter
q2 '); %3*x+2*y-2*z==1 |
|
|
|
|
|
|
|
|
|
|
|
f3=input('Enter
q3 '); %5*x+2*y-3*z==0 |
|
|
|
|
|
|
|
|
|
|
|
c=solve([f1,f2,f3],[x,y,z]); |
|
|
|
|
|
|
|
|
|
|
|
c.x,c.y,c.z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|