By Secant           ¦(x) = ex e–2x + 1 ¾® Eexample10
¦(x) = e2x ex 1 التعويض  f(x) |xn+1 - xn | النسبة المئوية
 
n xi-1 = قيمة افتراضية ® 0 -1.0000  
0  xi = قيمة افتراضية ®x1 =  -1 3.6708 │ϵα  
1 Secant law®x2 = -0.21409727 -0.7043 0.7859 367.0774 ¬
2  ®x3 = -0.34060574 -0.4295 0.1265 37.1422  
3  ®x4 = -0.53839609 0.2220 0.1978 36.7370  
4  ®x5 = -0.47100316 -0.0365 0.0674 14.3084  
5  ®x6 = -0.48051421 -0.0025 0.0095 1.9793   Use: Goal Seek Data ® What-it Analysis
6 ®x7 = -0.48122059 0.0000 0.0007 0.1468 x =  -0.4812 -0.0001 See Example8
7 ®x8 = -0.48121182 0.0000 0.0000 0.0018
8 ®x9 = -0.48121183 0.0000 0.0000 0.0000 Use: MathCad
9 ®x10 = -0.48121183 0.0000 0.0000 0.0000 See Example8
stop because the last two answers has been  Equaled  
By Newton Other example
¦(x) = e2x ex 1 قيم المشتقة قيم الدالة/المشتقة قيم (i+1)x Use: Maple
x(i) f x(i) f /x(i) f x(i)/f /x(i) x(i) - fx(i)/f/x(i) f(x):=(e)^(-2* x)-(e)^(-x)-1=0: (1)
0.2 -1.148410707 -0.521909 2.200403 -2.00040268 solve(f(x))     (2)
-2.0004026777 46.25010655 -101.892245 -0.453912 -1.54649074 -0.481211825     (3)
-1.5464907391 16.34773455 -39.390434 -0.415018 -1.13147286
Use: Derive
           
-1.1314728606 5.511140565 -16.122500 -0.341829 -0.78964371        
-0.7896437146 1.648886015 -7.500384 -0.219840 -0.56980349            
-0.5698034887 0.357620115 -4.483160 -0.079770 -0.49003383        
-0.4900338333 0.032265095 -3.696902 -0.008728 -0.48130623            
-0.4813062288 0.000341596 -3.618870 -0.000094 -0.48121184              
-0.4812118360 3.94505E-08 -3.618034 0.000000 -0.48121183 Use: MatheMatics
-0.4812118251 0 -3.618034 0.000000 -0.48121183 FindRoot[E^(-2 x) - E^-x - 1, {x, 0}] {x -> -0.4812118250596034`}
  stop because the last two answers has been  Equaled {x -> -0.481212} ـ↑ يمكن تغير أجزاء الرقم العشري من 5 إل 16 مثلاً كما مبين هنا
Program in Mthlab (Secant method)   Secant for : ¦(x) = e2x ex 1
 
clc       ans = f(x) = e–2x – e–x – 1
   disp('Secant for e^(-2x)-e^(-x)-1')       -1.00000000
x=[-1 0];       0.00000000
format long Resault ®   -0.21409727
for i=2:10       -0.72393399
   fx=exp(-2*x(i-1))-exp(-x(i-1)) -1; القيمة عند i -1 ¾¬   -0.40349699
   fxx=exp(-2*x(i))-exp(-x(i)) -1; القيمة عند i ¾¬   -0.46014818
   x(i+1)=x(i)-((x(i)-x(i-1))*fxx)/(fxx-fx); القيم الجديدة i+1 ¾¬   -0.48331662
end     -0.48115707
    x'     -0.48121168
  disp(' stop because the last two answers has been  Equaled')     -0.48121183
%-----------------------------------------------------       -0.48121183
   stop because the last two answers has been  Equaled By: Derive
----------------------------------------------------------------------- -----------------------------------------------------------------------
Program in Mthlab (NewtonRaphson method)   Newton for : ¦(x) = e2x ex 1   By: GeoGebra Ver.5
%e^(-2x)- e^(-x)-1     ans =     Click on: Newton_Secant2.ggb
x=[0];     -1.00000000    
tol=0.07;     -0.69561974    
format longg Resault ®   -0.52744619    
for i=1:8;       -0.48371226    
     fx=exp(-2*x(i))- exp(-x(i))-1; الدالة ¾¬   -0.48121946    
     fxx=-2*exp(-2*x(i))+exp(-x(i)) ;  مشتقة الدالة ¾¬   -0.48121183    
     x(i+1)=x(i)-(fx/fxx); القيم الجديدة ¾¬   -0.48121183    
end      
if abs(x(i+1)-x(i))<tol      
round(x',8)          
disp('stop because the last two answers has been  Equaled')  stop because the last two answers has been  Equaled
end