Example6: Find: òx2 sinx dx
We use : òu . dv = u . v – òv . du
let u = x2 Then du = 2x . dx , let dv = sin x . dx Then v = òsin x . dx = – cos x
òu . dv = u . v – òv . du
òx2 . sin x . dx = x2 . (– cos x) – ò( – cos x ) . 2x dx
òx2 . sin x . dx = – x2 cos x) + ò2x cos x dx ...................... (1)
To integrate: ò2x cos x dx
let u = 2x Then du = 2 . dx , let dv = cos x . dx Then v = òcos x . dx = sin x
òu . dv = u . v – òv . du
ò2x . cos x . dx = 2x .sin x – òsin x . 2 dx
ò2x . cos x . dx = 2x .sin x – ò2sin x dx
ò2x . cos x . dx = 2x .sin x – 2( – cos x )
ò2x . cos x . dx = 2x .sin x + 2 cos x ...........................(2)
From (2) In (1) Then
òx2 . sin x . dx = – x2 cos x + 2x .sin x + 2 cos x + c