1
Example3: Find ò ——————— . dx
———
x3 \/q2 + x2 dx
Let dx = – q cosechθ cotanhθ dθ Then x = q cosechθ
q2 + x2 = q2 + q2 cosech2θ = q2(1 + cosech2θ) = q2 cotanh2θ
———
\/q2 + x2 = | q cotanhθ |
———
x3 \/q2 + x2 = q3 cosech3θ . q cotanhθ = q4 cosech3θ cotanhθ
dx – q cosechθ cotanhθ dθ – dθ –1
ò———————— . dx = ò——————————— =ò——————— = —— òsinh2θ dθ
———
x3 \/q2 + x2 dx q4 cosech3θ cotanhθ q3 cosech2θ q3
–1 1 sinsh2θ
=ò —— . — ( cosinh2θ – 1) dθ "Note: ∫ cosinh2θ dθ = ———— + c "
q3 2 2
–1 sinsh2θ
= —— ( ———— – θ ) + c
2q3 2
–1 2 sinhθ cosinhθ
= —— ( ——————— – θ ) + c
2q3 2
–1
= —— ( sinhθ cosinhθ – θ ) + c
2q3