1

Example3: Find ò  ——————— . dx

                                       ———

                                x3 \/q2 + x2  dx

 

 

Let dx = – q cosechθ cotanhθ Then x = q cosechθ

 

     

 q2 + x2  = q2 + q2 cosech2θ =  q2(1 + cosech2θ) = q2 cotanh2θ

 

 

    ———

 \/q2 + x2  = | q cotanhθ |

 

        ———

x3 \/q2 + x2 = q3 cosech3θ . q cotanhθ = q4 cosech3θ cotanhθ

 

 

                dx                            – q cosechθ cotanhθ                 –                    –1               

 ò———————— . dx = ò——————————— =ò——————— =  —— òsinh2θ

            ———

    x3 \/q2 + x2  dx                       q4 cosech3θ cotanhθ             q3 cosech2θ       q3

 

 

 

                                        –1       1                                                                                 sinsh2θ

                                 =ò —— . — ( cosinh2θ – 1) dθ    "Note: cosinh2θ dθ =  ———— + c "

                                       q3        2                                                                                       2

 

 

 

                                       –1      sinsh2θ

                                 =  —— ( ————θ ) + c

                                      2q3             2

 

 

 

                                       –1      2 sinhθ cosinhθ

                                 =  —— ( ———————θ ) + c

                                      2q3                  2

 

 

 

                                       –1     

                                 =  —— ( sinhθ cosinhθθ ) + c

                                      2q3