———
Example2: Find ∫ \/ 4 + x2 dx
Let : x = 2 sinshθ Then dx = 2 coshθ dθ OR dx = 2 coshθ dθ , x = 2 sinshθ .... (1)
note: θ = sinsh–1(x/2) .... (2)
4 + x2 = 4 + 4 sinsh2θ = 4(1+sinsh2θ) = 4 cosh2θ
———
\/ 4 + x2 = 2 coshθ ..... (3)
———
\/ 4 + x2 dx = 2coshθ.2coshθ = 4 cosh2θ = 4× 0.5(1+cosh2θ) = 2(1+cosh2θ) = 2 + 2 cosh2θ
———
∫ \/ 4 + x2 dx = ∫(2 + 2 cosh2θ) .dθ
= 2 θ + sinsh2θ + c Such as: sinsh2θ = 2 sinshθ coshθ Then
= 2 θ + 2 sinshθ coshθ + c
From (1), (2), (3)
———
1
= 2 sinsh–1(x/2) + x — \/4 + x2 + c
2
———
1
= 2 sinsh–1(x/2) + — x \/4 + x2 + c
2