——— 

Example2: Find \/ 4 + x2  dx

 

 

Let : x = 2 sinshθ Then dx = 2 coshθ dθ   OR  dx = 2 coshθ dθ , x = 2 sinshθ .... (1)

 

 

note: θ = sinsh–1(x/2) .... (2)

 

 

4 + x2 = 4 + 4 sinsh2θ = 4(1+sinsh2θ) = 4 cosh2θ

   ——— 

\/ 4 + x2  = 2 coshθ   ..... (3)

 

   ——— 

\/ 4 + x2   dx = 2coshθ.2coshθ = 4 cosh2θ = 4× 0.5(1+cosh) = 2(1+cosh) = 2 + 2 cosh

 

 

     ——— 

\/ 4 + x2  dx = (2 + 2 cosh2θ) .dθ

 

 

                   = 2 θ + sinsh2θ + c   Such as: sinsh2θ = 2 sinshθ coshθ Then

 

 

                   = 2 θ + 2 sinshθ coshθ + c 

 

From (1), (2), (3)

 

                                                                ———

 

                                                          1         

                   = 2 sinsh–1(x/2) + x \/4 + x2  + c 

                                                          2

 

 

                                                                ———

 

                                                      1         

                   = 2 sinsh–1(x/2) + — x \/4 + x2  + c 

                                                      2