Example1: Find sin4x dx

sin4x dx =(sin2x)2 dx

 

 

 

 

 

                     1

                =— (1–cos2x)2 dx

                     4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     1

                =[1– 2cos2x + cos2(2x) ] dx

                     4

 

 

 

 

 

 

 

 

                      1                          1

                = [1– 2cos2x + —(1+ cos4x)] dx

                      4                          2

 

 

 

 

 

 

 

 

 

 

                         1      1                 1      1

                = [ — – — cos2x + — + — cos4x)] dx

                         4      2                 8      8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     1            1                       1             1

                =  —dx – —cos2x .dx + dx + — cos4x .dx

                     4            2                       8             8

 

 

 

 

 

 

 

 

 

 

 

 

 

                     1         1                1          1

                =  — x – — sin2x + — x + sin4x + c

                     4         4                8         32

 

 

 

 

 

 

                     3         1                 1

                =  — x – — sin2x +  — sin4x + c

                     8         4                32