Example1: Find ∫sin4x dx
∫sin4x dx =∫(sin2x)2 dx
1
=∫— (1–cos2x)2 dx
4
1
=∫— [1– 2cos2x + cos2(2x) ] dx
4
1 1
= ∫— [1– 2cos2x + —(1+ cos4x)] dx
4 2
1 1 1 1
= ∫[ — – — cos2x + — + — cos4x)] dx
4 2 8 8
1 1 1 1
= —∫dx – —∫cos2x .dx + — ∫dx + — ∫ cos4x .dx
4 2 8 8
1 1 1 1
= — x – — sin2x + — x + — sin4x + c
4 4 8 32
3 1 1
= — x – — sin2x + — sin4x + c
8 4 32